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ABSTRACT

Natural Language Explanation (NLE) in vision and language tasks aims to provide
human-understandable explanations for the associated decision-making process. In
practice, one might encounter explanations which lack informativeness or contra-
dict visual-grounded facts, known as implausibility and hallucination problems,
respectively. To tackle these challenging issues, we consider the task of visual ques-
tion answering (VQA) and introduce Rapper, a two-stage Reinforced Rationale-
Prompted Paradigm. By knowledge distillation, the former stage of Rapper infuses
rationale-prompting via large language models (LLMs), encouraging the rationales
supported by language-based facts. As for the latter stage, a unique Reinforcement
Learning from NLE Feedback (RLNF) is introduced for injecting visual facts into
NLE generation. Finally, quantitative and qualitative experiments on two VL-NLE
benchmarks show that Rapper surpasses state-of-the-art VQA-NLE methods while
providing plausible and faithful NLE.

1 INTRODUCTION

Deep learning has achieved remarkable success in vision-language (VL) tasks such as visual reasoning
(Suhr et al., 2017), visual question answering (VQA, Goyal et al., 2017), and visual entailment (Xie
et al., 2019). Take VQA as an example, while these models exhibit impressive ability in inferring
answer descriptions from the given image-question pairs, its decision-making process remains an
unsolved problem. As a result, such a black-box manner severely restricts their applicability in
certain real-world scenarios (e.g., medical VQA, Lin et al., 2023), where the interpretability of the
learning model is crucial for establishing trustworthy systems. To tackle this long-standing challenge,
some approaches adopt attention mechanisms (Anderson et al., 2018) or gradient-based activations
(Selvaraju et al., 2017), focusing on highlighting image regions which are relevant to the associated
prediction. However, such visual explanations might not be desirable for VL tasks (e.g., those beyond
classification) due to the lack of reasoning process (Kayser et al., 2021; Sammani et al., 2022). As a
result, Natural Language Explanation (NLE) has emerged as a potential alternative, which aims to
interpret the underlying reasoning process by natural language descriptions.

To extend NLE for vision-language tasks (i.e., VL-NLE), Park et al. (2018) and Kayser et al. (2021)
introduced the benchmarks for explaining the decision-making process with NLEs for VQA and
visual entailment tasks, respectively. Subsequent VL-NLE works have evolved into two research
lines. The first research line (Park et al., 2018; Marasović et al., 2020) focuses on how to improve
their pipeline from an architecture perspective for training NLE generators within a fully supervised
learning manner. On the other hand, Sammani et al. (2022) and Suo et al. (2023) emphasize the
utilization of unlabeled pre-training data to enhance the language models’ NLE capability.

Despite significant advancements, most existing VL-NLE works require training in a full supervised
manner. They might encounter problems where the explanations are irrelevant to the questions or
contradictory to the established supporting facts (Majumder et al., 2021). The other potential concern
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Figure 1: Comparison between (a) previous VQA-NLE paradigm and (b) our proposed reinforced
rationale-prompted VQA-NLE paradigm of (Rapper). Instead of directly generating answer or
explanation, Rapper learns plausible and faithful explanations which prompt the VQA model with
improved performance.

is that the explanation is not related to the visual image (Ji et al., 2023). More specifically, the
former problem is referred to as implausibility, while the latter is known as hallucination. Take
visual input and question in Fig. 1 as an example, “Because there is a tower.’ is an implausible
explanation since it is irrelevant to question, and “Because the sun is big.” is a hallucinated one since
the sun is not visible in the image. Although these issues have been recently studied in the NLE
community (Zhao et al., 2023; Turpin et al., 2023), they remain unexplored in the field of VL-NLE.
As a result, generating plausible yet faithful NLEs for elucidating vision-language models continues
to pose a crucial challenge.

Recently, rationale-based prompting techniques have been manifested to improve the capability of
Large Language Models (LLMs) on complex reasoning tasks (Wei et al., 2022; Liu et al., 2022b).
Such techniques involve elicitation of rationales from LLMs, producing knowledge-riched or fact-
based intermediate to facilitate the reasoning capability of language model. Thus, these prompting
manners are emerging as promising solutions for NLE (Zhao et al., 2023; Krishna et al., 2023).
These rationale-prompting paradigms have been further extended to multi-modal regimes such as
mm-CoT (Zhang et al., 2023) and mm-ReAct (Yang et al., 2023). However, mm-CoT (Zhang et al.,
2023) relies on the ground-truth rationales for training, while mm-ReAct (Yang et al., 2023) have
potential hallucinated outputs due to the information loss when converting visual signals into text for
ChatGPT API call understanding.

In this paper, we propose Reinforced Rationale-Prompted Paradigm (Rapper) for providing accurate
answers for VQA with sufficient NLE, which are plausible and faithful. As depicted in Fig. 1(b),
our Rapper learns to exploit knowledge learned from LLM and incorporate the corresponding visual
content from input images into rationales through two stages. Without observing any ground truth
rationale during training, the first stage utilizes a knowledge distillation process to introduce LLM
for enriching the rationales with supporting facts, encouraging NLE to be factual and plausible.
The subsequent stage of Reinforcement Learning from NLE Feedback (RLNF) further exploits the
answer-explanation feedback to enforce the produced rationales associated with both question and
visual inputs, allowing faithful NLE.

We now summarize the contributions of this work below:

• A reinforced rationale-prompted paradigm, Rapper, is proposed for plausible and faithful NLE
generation in VQA. This is achieved through two proposed stages: knowledge distillation process
from LLM and Reinforcement Learning from NLE Feedback (RLNF).

• In Rapper, we first advance LLM and perform knowledge distillation. This results in predicted
rationales being based on language-based facts, which prompt the VQA model for plausible NLE.

• To align NLE with the visual input, we introduce Reinforcement Learning from NLE Feedback
(RLNF) to Rapper, which utilizes the answer-explanation feedback as rewards and prompts the
VQA model with predicted rationales for faithful NLE.
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• Our Rapper achieves new state-of-the-art performance for both VQA-X (Park et al., 2018) and e-
SNLI-VE (Kayser et al., 2021) on NLE generation. We also demonstrate that Rapper outperforms
existing VQA-NLE works with reduced implausibility and hallucination.

2 RELATED WORK

Plausible and Faithful Natural Language Explanation Research on plausibility and faithfulness
in NLE (Majumder et al., 2021; King et al., 2022; Gou et al., 2023; Stacey et al., 2023) has garnered
wide attention, particularly due to the evolution of Large Language Models (LLMs) and chain-of-
thought (CoT) prompting techniques (Wei et al., 2022). Notably, the method of integrating external
knowledge databases for fact generation or retrieval has been proven effective in enhancing the
plausibility and faithfulness of NLEs (Majumder et al., 2021; Stacey et al., 2023). Based on this
advancement, some recent approaches, such as the verify-then-correct pipeline by Gou et al. (2023)
and novel decoding strategies proposed by Lan et al. (2023) and King et al. (2022), aim to mitigate
hallucination in textual outputs. However, these works typically focus on isolated single text modality
or rely on static external knowledge databases, limiting its scalability to multimodal data.

Natural Language Explanation for Vision-Language Tasks Most existing VL-NLE works (Wu &
Mooney, 2018a; Park et al., 2018; Marasović et al., 2020; Kayser et al., 2021) generate explanations
in a predict-then-explain fashion. Specifically, an answer is first predicted by a pre-trained VL
model (e.g., UNITER (Chen et al., 2020) or Oscar (Li et al., 2020)), followed by the generation of
the corresponding explanation via a separate language decoder (e.g., GPT2 (Radford et al., 2019)).
As the answer and explanation are predicted separately, the explanation often contains irrelevant
or contradictory descriptions of the given visual information, struggling to faithfully represent the
underlying reasoning process. Recently, NLX-GPT (Sammani et al., 2022) proposes to jointly
generate the answer and explanation by a unified sequence-to-sequence model, while S3C (Suo et al.,
2023) further enforces the explanation to be consistent with the predicted answer. Although the above
approaches have been shown to mitigate the hallucination issue, it is not clear how their NLE is
established upon supporting facts or taking the visual input into consideration. Therefore, how to
tackle the potential implausibile or hallucinated NLE remains a challenging task.

Reinforcement Learning for Language Models Several research works have explored RL and
view it as the key component to enhance models across vision-language tasks such as image caption-
ing (Rennie et al., 2017), novel object captioning (NOC) (Yang et al., 2022), and VQA (Lu et al.,
2022a; Fan et al., 2018; Liu et al., 2018). There has been a concentrated effort to align LMs with
natural language (NL) feedback (Akyürek et al., 2023; Yang et al., 2022; Liu et al., 2022a) as well
as non-NL feedback (Bai et al., 2022; Lu et al., 2022b). For example, Liu et al. (2022a) utilizes the
probability of the correct answer as a reward to stimulate an auxiliary module to produce beneficial
knowledge, thereby enhancing QA-task performance. Similarly, Yang et al. (2022) employs a CIDEr
optimization strategy to enhance the caption with sufficiently visual fidelity in the task of novel object
captioning. Despite of their effectiveness, their RL framework or NL-feedback approaches cannot be
easily applied for VL-NLE tasks.

3 PROPOSED METHOD

3.1 PROBLEM FORMULATION

Given a VQA input X = (V,Q) consisting of an input image V and a textual input Q (i.e., question),
our goal is to predict the answer Â and the corresponding explanation Ê (denoted as Ŷ = (Â, Ê)) via
a reasoning module M . In order to encourage M to provide correct answer with plausible and faithful
explanation, we propose a Reinforced Rationale-Prompted Paradigm (Rapper) scheme, which learns
an additional rationale generator G to jointly exploit the supporting facts from LLMs and the visual
content observed from the conditioned image into rationales. Note that only the ground truth A and
E are available during training, not the rationales. As depicted in Fig. 2, the learning of Rapper is
decomposed into: (A) Knowledge Distillation from LLM (Sec. 3.2), and (B) Reinforcement learning
from NLE Feedback (RLNF) (Sec. 3.3), which trains rationale generator G for providing auxiliary
intermediates when predicting Ŷ = (Â, Ê).
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Figure 2: Overview of Rapper. Rapper involves two training stages: (A) Knowledge distillation
introduce the rationales R′

p from LLM by offering established facts, facilitating the generation of
plausible NLEs from the reasoning module M . (B) Reinforcement learning from NLE feedback
(RLNF) further refines the rationales from R′ to R by incorporating visual information, encouraging
generation of faithful NLEs from M .

3.2 PLAUSIBLE NLE GENERATION

Since VQA-NLE models typically rely on ground truth answers and explanations for training, it is not
clear whether the underlying visual and language knowledge are exploited to support the predicted
outputs. In the first stage of Rapper, we propose to leverage powerful reasoning capability inherent
in LLM for plausible NLE generation. As depicted in Fig. 2(A), we propose to learn a rationale
generator G by utilizing knowledge distillation from LLM (e.g., LLaMA-65B (Touvron et al., 2023)).
This would have the reasoning module M elaborate the conditioned rationales before answering and
explaining and encourage plausible NLE. We now detail this learning stage.

3.2.1 KNOWLEDGE DISTILLATION FOR FACTED-BASED RATIONALE GENERATION

With the recent success of LLMs showing great capability for generating rationale prompts as
intermediate reasoning steps and knowledge (Wei et al., 2022; Kojima et al., 2022; Liu et al.,
2022b) for reasoning task, we propose to advance the guidance of pre-trained LLMs to acquire
such knowledge, so that supporting facts or knowledge can be exploited and serve as rationales for
VL-NLE. Since no ground-truth rationales are available, we leverage the LLM to produce rationales
as pseudo ground truth for training our rationale generator G. Inspired by Liu et al. (2022a;b)
and Min et al. (2022), we elicit pseudo rationale rp from LLM with a task-specific set of few-shot
demonstrations (see Sec. A.5 for details) as follows:

Rp = {rp | rp ∼ PLLM(y, q)}, (1)

where y is the ground-truth answer-explanation pair, q is question, PLLM denotes the LLM in an
autoregressive manner, rp is the sampled pseudo rationale from PLLM, and thus Rp is the set of all rp.

However, the above pseudo rationales may be redundant, noisy or lengthy, which would not be
desirable for subsequent NLE tasks (Li et al., 2023b). Thus, we apply a post-processing mechanism
to filter pseudo rationales Rp to R′

p. To be specific, we apply a round-trip consistency by answering
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the input question on the pseudo rationales with a pre-trained question-answering (QA) model F 1.
The pseudo rationale is retained when the matching score between the ground-truth answer and the
answer predicted by F exceeds a predetermined threshold τ . This matching score is quantified with
the token-level F1 score (Wang et al., 2020). Thus, the process of collecting the filtered pseudo
rationales R′

p is formulated as follows:

R′
p = {rp | F1-score(ã, a) ≥ τ, ã ∼ PF(Q, rp), rp ∈ Rp}, (2)

where a is the ground truth answer, ã is the answer predicted by F based on the pseudo rationale, and
PF denotes the pre-trained QA model F in an autoregressive fashion.

With the above R′
p serving as psuedo ground truth, we are able to train the rationale generator G with

the distillation loss LG described below:

LG = −
T∑

t=1

log(pG(r
′
p,t|r′p,0:t−1, x)), (3)

where r′p ∈ R′
p, T = |r′p|, and x = {v, q} ∈ X .

3.2.2 PROMPTING BY FACT-BASED RATIONALE FOR PLAUSIBLE NLE

With rationales R′
p better aligned with the facts, we can proceed to the training of the reasoning

module M for NLE generation. We note that, since rationales R′
p are in the form of natural language,

our the reasoning module M (which is also based on visual-language model) would be able to interpret
them. Thus, in addition to the image-question pair X as the inputs to the reasoning module M , the
derived pseudo rationales R′

p are further viewed as input prompts, which provide fact-supporting
conditions when training M to perform VQA-NLE. As a result, we train M by calculating the
reasoning loss LM as follows:

LM = −
T∑

t=1

log(pM (yt|y0:t−1, r
′
p, x)). (4)

In the above cross-entropy loss, y = [a; e] ∈ Y is the concatenation of the ground-truth answer a and
explanation e.

3.3 FAITHFUL NLE GENERATION

Although the above knowledge distillation process based on LLM introduces plausibility into our
rationale generation, the predicted rationales might not be related to the visual input and thus encounter
the hallucination problem. To tackle this issue, we introduce a novel technique of Reinforcement
Learning from NLE Feedback (RLNF). This learning strategy is to encourage the rationale generator
G to fully exploit multimodal input data, so that the output rationales are not only plausible but also
faithful. Once G produces faithful rationales, we can fine-tune the reasoning module M for plausible
yet faithful NLE.

3.3.1 RLNF FOR INJECTING VISUAL FACTS

To address the potential hallucination issue, we propose Reinforcement Learning from NLE Feedback
(RLNF) by enforcing rationale generator G to derive the visual facts from the input image into
rationales. To achieve this, we define a reward function via RL that penalizes the fact-based but
hallucinated rationales R′, while rewarding the rationales R that contain both established facts
and visual content, as depicted in Fig. 2(B). To achieve this, we design our reward r total to be
the addition of answer scores r ans and the explanation score r exp, which are the average predicted
probability of the ground-truth answer and CIDEr score (Vedantam et al., 2015), respectively. For
the answer score, inspired by and following Kadavath et al. (2022), we maximize the answer score
to assess the faithfulness of the predicted explanation. This maximization enforces the rationale

1In the implementation, we follow (Changpinyo et al., 2022) and use UnifiedQA (Khashabi et al., 2022) as
the pre-trained QA model.
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Algorithm 1 Training RAPPER

Input: Rationale generator G, reasoning module M , LLM PLLM and pre-trained QA model PF

Data: Image-question pairs X = {xi}Ni=1, and answer-explanation pairs Y = {yi}Ni=1

/* Stage(A): KD for Plausible NLE Generation */
Rp ← Collect pseudo rationales (Eq. equation 1);
R′

p ← Get filtered pseudo rationales from Rp (Eq. equation 2);
▷ Section 3.2.1

G← Update G with LG (Eq. equation 3);
M ← Update M with LM (Eq. equation 4);

▷ Section 3.2.2
/* Stage(B): RLNF for Faithful NLE Generation */
G← Update G with Rtotal (Eq. equation 8); ▷ Section 3.3.1
M ← Update M with LM (Eq. equation 10); ▷ Section 3.3.2

Output: Gθ , Mϕ

generator G to inject more visual content into the rationale because the reasoning module M need
more visual clues to correctly answer the question. Therefore, this process transform R′ to R, and
simultaneously provide the M with more visual fact-based rationale R to enable the explanation
with sufficient faithfulness. On the other hand, the explanation score r exp is (i.e., specifically CIDEr
score) to maintain the plausibility of NLE after the first training stage. As a result, the reward r total is
formulated as follows:

r total(x, a, e, ê, r) = r ans(a, x, r) + r exp(e, ê), (5)
r ans(a, x, r) = Z(PMϕ

(a | x, r)), (6)

r exp(e, ê) = Z(CIDEr(e, ê)), (7)

where x = {v, q} is the input image-question pair, a denotes the ground-truth answer, e denotes the
ground-truth explanation, ê is the predicted explanation from M , and r ∈ R is the sampled rationales
from G.Notably, Z is an input-specific normalization function that follows Deng et al. (2022) to
normalize reward for stabilizing the RL training process.

RLNF Formulation Our RLNF employs Proximal Policy Optimization (PPO) (Schulman et al.,
2017) as the RL algorithm. As the policy model updated, the rationale generator G is to maximize
the following reward Rtotal:

max{Rtotal(x, a, e, ê, r)}, r ∼
T∏

t=1

PG(wt|w<t), (8)

where r = {wi}Ti=0, T = |r|, and x = {v, q}. However, we need to ensure the generated rationales
are understandable by humans and do not deviate too far from the distilled knowledge. To achieve
this, we add a KL penalty term between the learned policy θ and the initial policy θinit after the
knowledge distillation phase. Therefore, the overall reward is defined as:

Rtotal(x, a, e, ê, r) = r total(x, a, e, ê, r)− α log
pG(r|x; θ)
pG(r|x; θinit)

, (9)

where Rtotal(x, a, e, ê, r) is the reward in Eq. 5.

3.3.2 PROMPTING BY VISUAL-FACT-BASED RATIONALE FOR FAITHFUL NLE

Once the rationale generator G is trained with the introduced RLNF, it is encouraged to produce
visual fact-based rationales R that are encapsulated with established facts and visual content from
visual input. Again, since R are natural language prompts, they are inherently interpretable by our
reasoning module M . Therefore, for the given image-question pairs X , we utilize R as part of input
prompts during the reasoning process of M . This ensures the NLEs from M retain plausibility
because of the established supporting facts lies in R, together with the enhanced faithfulness because
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of the derived visual content embedded in R. We optimize M to achieve this with the reasoning loss
LM defined as follows:

LM = −
T∑

t=1

log(pM (yt|y0:t−1, r, x)), (10)

where r ∈ R, x = {v, q} ∈ X , and y = [a; e] ∈ Y , which is the concatenated ground-truth answer a
and explanation e sequence.

Therefore, through the complete Rapper training process as outlined in Algorithm 1, VQA-NLE tasks
would be successfully enabled with adequate plausibility and faithfulness.

3.4 INFERENCE

At inference time, for a given input image-question pair x ∈ X , we first generate rationale r on the
fly from the rationale generator G:

r = {wi | wi ∼ PG(w<i, x); i = 0, . . . , n},
where r = {wi}ni=0 is the sampled rationale, n = |r|, and x = {v, q}. Subsequently, we prompt the
reasoning module M by concatenating the predicted rationale r̂ with the image-question pair x for
outputting the final answer and explanation sequence ŷ. This can be formulated as:

ŷ = [â; ê] = {zi | zi ∼ PM (z<i | x, r); i = 0, . . . ,m},
where m = |ŷ|, and ŷ = {zi}mi=0 is the concatenated answer and explanation, denoted as [â; ê].

4 EXPERIMENTS

4.1 DATASET AND SETUP

We follow (Kayser et al., 2021; Sammani et al., 2022; Suo et al., 2023) and consider two VL-NLE
datasets. VQA-X (Park et al., 2018) builds upon VQAv2 dataset (Goyal et al., 2017). It is composed
of 32.3K samples, divided into 29K for training, 1.4K for validation, and 1.9K for testing. e-SNLI-
VE (Kayser et al., 2021) builds upon e-SNLI dataset (Camburu et al., 2018), consisting of 43K
image-hypothesis pairs, divided into 40K for training, 1.4K for validation, and 1.6K for testing.

Rapper is consists of a rationale generator G and a reasoning module M , are both initialized from
the pretrained image captioning model (Li et al., 2023a). The LLM for knowledge distillation during
stage(A) is LLaMA-65B (Touvron et al., 2023). More implementation details are shown in Sec. A.1.

4.2 EVALUATION METRICS

For NLE evaluation, we use BLEU@N (Papineni et al., 2002), METEOR (Banerjee & Lavie, 2005),
ROUGE-L (Lin, 2004), CIDEr (Vedantam et al., 2015), and SPICE (Anderson et al., 2016) as the
metrics, while using VQA accuracy to evaluate predicted answers. To evaluate the degree of plausibil-
ity and faithfulness of explanations, we measure them with CIDEr/SPICE and RefCLIPScore Hessel
et al. (2021), respectively. In addition, we build human evaluation for explanation on plausibility and
faithfulness since automatic metric measures not always reflect the correctness and logicality. Please
refer to Appendix A.3 for the details of our human evaluation process.

Plausibility To quantitatively evaluate explanation plausibility, we employ CIDEr and SPICE
scores. CIDEr measures the similarity between the generated explanation and human-written ground
truth sentences, capturing human consensus by introducing tf-idf weight (Vedantam et al., 2015). On
the other hand, SPICE converts sentences into semantic scene graphs, allowing evaluation to break
grammatical constraints and thus closely resembling human judgment (Anderson et al., 2016).

Faithfulness We adopt RefCLIPScore, which computes the harmonic mean of CLIPScore (Hessel
et al., 2021) and maximal reference cosine similarity, thereby encapsulating the correlation between
the explanation and its reference. As noted by Hessel et al. (2021), RefCLIPScore surpasses prior
metrics in correlating with human judgment for hallucination detection.
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Method
VQA-X

B@1 B@2 B@3 B@4 METEOR ROUGE-L CIDEr SPICE Accuracy

PJ-X (Park et al., 2018) 57.4 42.4 30.9 22.7 19.7 46.0 82.7 17.1 76.4
FME (Wu & Mooney, 2018b) 59.1 43.4 31.7 23.1 20.4 47.1 87.0 18.4 75.5
RVT (Marasović et al., 2020) 51.9 37.0 25.6 17.4 19.2 42.1 52.5 15.8 68.6
QA-only (Kayser et al., 2021) 51.0 36.4 25.3 17.3 18.6 41.9 49.9 14.9 -

e-UG (Kayser et al., 2021) 57.3 42.7 31.4 23.2 22.1 45.7 74.1 20.1 80.5
NLX-GPT (Sammani et al., 2022) 64.2 49.5 37.6 28.5 23.1 51.5 110.6 22.1 83.07

S3C (Suo et al., 2023) 64.7 50.5 38.8 30.7 23.9 52.1 116.7 23.0 85.6

Rapper (ours) 65.5 51.6 40.5 31.8 24.3 52.9 124.0 24.5 87.25

Method
e-SNLI-VE

B@1 B@2 B@3 B@4 METEOR ROUGE-L CIDEr SPICE Accuracy

PJ-X (Park et al., 2018) 29.4 18.0 11.3 7.3 14.7 28.6 72.5 24.3 69.2
FME (Wu & Mooney, 2018b) 30.6 19.2 12.4 8.2 15.6 29.9 83.6 26.9 73.7
RVT (Marasović et al., 2020) 29.9 19.8 13.6 9.6 18.8 27.3 81.7 32.5 72.0
QA-only (Kayser et al., 2021) 29.8 19.7 13.5 9.5 18.7 27.0 80.4 32.1 -

e-UG (Kayser et al., 2021) 30.1 19.9 13.7 9.6 19.6 27.8 85.9 34.5 79.5
NLX-GPT (Sammani et al., 2022) 37.0 25.3 17.9 12.9 18.8 34.2 117.4 33.6 73.91

Rapper (ours) 40.5 28.1 20.2 14.7 20.8 35.9 128.6 34.9 75.73

Table 1: Quantitative NLE comparisons of filtered results (i.e., NLE evaluation conditioned on correct
answers) on VQA-X and e-SNLI-VE.

Method
Unfiltered Filtered

AccuracyB@4 METEOR ROUGE-L CIDEr SPICE B@4 METEOR ROUGE-L CIDEr SPICE

Rapper 30.0 23.3 51.3 116.0 23.2 31.8 24.3 52.9 124.0 24.5 87.3
− RLNF 29.4 23.6 51.2 113.0 23.0 31.2 24.5 52.5 120.2 24.2 86.6
− RLNF − KD 27.1 21.8 49.7 103.2 20.7 29.3 23.0 51.6 112.1 22.3 85.0

Method
Unfiltered Filtered

AccuracyB@4 METEOR ROUGE-L CIDEr SPICE B@4 METEOR ROUGE-L CIDEr SPICE

Rapper 30.0 23.3 51.3 116.0 23.2 31.8 24.3 52.9 124.0 24.5 87.3
Rapper w/o filtering 28.5 22.7 50.8 110.6 22.2 30.1 23.4 52.1 116.7 23.4 86.4

Table 2: Ablation studies of the proposed training schemes (up) and the filtering mechanism for
knowledge distillation (bottom). We compare the performances in both filtered and unfiltered settings.

4.3 QUANTITATIVE ANALYSIS

Method RefCLIPScore(↑)
Much recent VL-NLE works

NLX-GPT 64.06
S3C 65.09

Our stage-ablated approaches

Rapper (w/o KD and w/o RLNF) 66.00
Rapper (w/o RLNF) 65.66
Rapper 67.05

Table 3: Faithfulness evaluation on the VQA-X
dataset under filtered setting. Note that a higher
RefCLIPScore indicates less hallucination.

NLE evaluation. In Table 1, Table 5, and Table 6,
we demonstrate that Rapper outperform previous
state-of-the-art methods in NLE-related metrics on
both VQA-X and e-SNLIV-VE datasets, with filtered
and unfiltered settings. The filtered setting in Table 1
considers the explanations that are associated with
correct answers. Conversely, the unfiltered setting
in Table 5 and Table 6 in Appendix A.2 indicates
evaluations of explanations without considering the
correctness of the corresponding answers.

Method Plausibility (↑) Faithfulness (↑)

NLX-GPT 0.771 0.795
S3C 0.797 0.811

Rapper 0.845 0.859

Table 4: Human evaluation on plausibility and
faithfulness on VQA-X in the filtered setting.

Plausibility & faithfulness of NLE. We assess
the plausibility and faithfulness in NLE through
CIDEr/SPICE (in Table 1), RefCLIPScore (in Ta-
ble 3), and human evaluation (in Table 4). In ta-
ble 1, we demonstrate that Rapper outperforms previ-
ous state-of-the-art methods in NLG metrics on both
VQA-X and e-SNLI-VE benchmarks, underscoring
its superiority in generating plausible explanations.
On the other hand, in table 3, Rapper’s superior RefCLIPScore indicates fewer hallucinations and
increased faithfulness over other VQA-NLE works, although the RefCLIPScore of Rapper (w/o
RLNF) is lower due to the hallucinations introduced by knowledge distillation from LLM. Nonethe-
less, Rapper still successfully reduce hallucination after the RLNF training. This demonstrates the
effectiveness of our proposed RLNF to enable the model to generate faithful NLEs. Lastly, through
human evaluation in Table 4, we provide further human-perceived evidence for the effectiveness of
Rapper for improved NLE generation.
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Rapper

Q: What kind of animal is this?
GT A: Sheep
GT E: The animal is covered in thick wool

(c)
Q: Is the table cluttered?
GT A: No
GT E: There is only a single vase 
          with flowers on it

(a)
Q: Is this in an asian country? 
GT A: Yes
GT E: there is an asian language used as text font

  in public

(b)

A sheep is a type of animal that has
wool on its body

Sheep
It has a long face and long nose

Sheep
Its has wool on its body

No

No

There are no objects in the table

There is only one object on it

The table is not cluttered because
there is only one object on it

Yes

Yes

 There is a train on the tracks

There is asian writing on the train

Multimodal
Input

Methods

NLX-GPT

Sheep
It has a long snout and white fur

No
There are only a few items on it

Yes
 There is a train in the stations
The presence of asian writing on the train suggests
that it is in an asian country

Figure 3: Visualization of output answers and explanations predicted by different methods. Note that
words in red denote hallucinated explanations, and those in orange denote implausible ones. Words
in blue denote faithful and plausible explanations to the input image-question pair.

Ablation on the proposed stages. In top of Table 2, we evaluate our two-stage approach: (A) KD
from LLM and (B) RLNF. Compared to the Rapper baseline without KD and RLNF, our method
enhances explanation plausibility and faithfulness, highlighting the importance of both stages.

x=None x=R′

(rationale
w/ only KD)

x=R
(rationale

w/ KD
and RLNF)

x

66

68

70

72

74

76

78

80

Te
st

 A
cc

ur
ac

y 
(%

)

68.30%
69.84%

74.48%

VQA-X

Figure 4: Ablation studies of derived ratio-
nales. Note the VQA accuracy on the VQA-
X dataset is evaluated.

Ablation on the "Filter" mechanism. In bottom of
Table 2, our filtering mechanism in knowledge distillation
stage outperforms the baseline Rapper without filtering, by
effectively removing overly redundant and noisy pseudo
rationales that could impair model performance.

Ablation studies of derived rationales. In Fig. 4, we
demonstrate that introducing two proposed stages im-
proves the quality of derived rationales, benefiting the
VQA performance of vision-language large model. Specif-
ically, we test whether mPLUG-Owl (Ye et al., 2023) can
answer accurately when given a pair (image, question, and
x ∈ (None, R′, R)), where x = None indicates no ratio-
nales as input, x = R′ indicates the rationales are from
Rapper with KD training, and x = R indicates the ratio-
nales are from Rapper with both KD and RLNF training.
Notably, we find that rationale quality improves progres-
sively as we implement the stages we have proposed. This
underscores the effectiveness of our designed stages in
enhancing rationale quality.

4.4 QUALITATIVE EVALUATION

In Fig.3, we compare NLX-GPT(Sammani et al., 2022), S3C (Suo et al., 2023), and our Rapper
on the VQA-X dataset. Rapper consistently produces more plausible explanations. For example,
Fig.3(a) highlights ability of Rapper to derive visual facts, such as identifying a single object on
the table, surpassing previous methods that might produce hallucinated explanations. Similarly, in
Fig.3(b), Rapper offers plausible explanations like recognizing Asian writing, contrasting with the
implausible outputs of prior methods. Additional results and ablation studies are in Appendix A.4.

5 CONCLUSION

In this paper, we proposed Rapper, a two-stage Reinforced Rationale-Prompted Paradigm for enabling
NLE with sufficient plausible and faithful properties. Our Rapper uniquely distills language-based
knowledge from LLM and utilizes RL with natural language feedback from the VQA task, so that
the designed rationale generator is able to produce rationales with the aforementioned desirable
properties. By prompting such predicted rationales into the reasoning module, we demonstrated that
satisfactory VQA performances can be achieved. Compared to SOTA VQA-NLE methods, possible
implausible or hallucinated explanations can be mitigated by our Rapper.
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