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Abstract. Concept erasure in text-to-image diffusion models aims to
disable pre-trained diffusion models from generating images related to
a target concept. To perform reliable concept erasure, the properties
of robustness and locality are desirable. The former refrains the model
from producing images associated with the target concept for any para-
phrased or learned prompts, while the latter preserves its ability in
generating images with non-target concepts. In this paper, we propose
Reliable Concept Erasing via Lightweight Erasers (Receler). It learns a
lightweight Eraser to perform concept erasing while satisfying the above
desirable properties through the proposed concept-localized regulariza-
tion and adversarial prompt learning scheme. Experiments with various
concepts verify the superiority of Receler over previous methods. Code
is available at https://github.com/jasper0314-huang/Receler.
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1 Introduction

In recent years, text-to-image generation models [4, 32, 34, 36, 38] have achieved
unprecedented success in generating photo-realistic images which benefit vari-
ous industrial applications [34, 38]. Despite their apparent success and conve-
nience, these models may produce images that are deemed NSFW (Not Safe for
Work) [21] or infringe upon intellectual property and portrait rights [1], e.g .,
generating nudity, violent content, or imitating the style of well-known artists.
This issue is mainly due to the memorization of the large-scale training data
sourced from the web [8, 43]. To address the above problem, an intuitive solu-
tion is to manually filter out the inappropriate images and re-train the model.
However, as pointed out in [16], this may lead to unpredictable results such as
exposing more inappropriate content to be memorized [7] or incomplete visual
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Fig. 1: Illustration of (a) robustness and (b) locality-preserving in concept
erasing. The former requires models to be robust against paraphrased attacks from
the target concept (i.e., “nudity”), while the latter aims to preserve the visual content
of non-target concepts (e.g ., “tennis player” or “airplane”). Note that SD denotes Stable
Diffusion [36]; UCE [16] and ESD [15] are recent works on concept erasing.

concept removal [35]. Moreover, even though filtered image data can be collected,
re-training generative models is still computationally expensive [15,23,42].

Instead of processing training data and re-training models, an alternative is to
erase or unlearn specific concepts from the pre-trained model [15,16,23,52]. That
is, given a concept described in text, the pre-trained model is fine-tuned to forget
that concept so that the associated image content cannot be generated from the
fine-tuned model. In practice, it would be desirable to perform concept erasing
with sufficient reliability, which suggests two desirable properties: locality and
robustness. Locality indicates the ability to preserve the model generalization in
synthesizing content not associated with the target concept [31,42]. Robustness
requires erased models to effectively remove the target concept [31,42], while not
be circumvented by paraphrased prompts that aim to recover the target concept
(e.g., “car” vs. “jeep”). While both locality and robustness have been recently
discussed in the field of NLP [10,12,20,29,50], the developed techniques cannot
be directly applied to text-to-image generative models for performing concept
erasing.

Recently, a number of methods for concept erasing or unlearning for diffusion
models have been proposed [15,16,23,52]. For example, Ablating [23] predefines
an anchor concept for each target concept that needs to be unlearned and then
achieves model unlearning by mapping the image distribution of the target con-
cept to that of the anchor concept, e.g . mapping “grumpy cat” to “cat.” Inspired
by classifier-free guidance [19], ESD [15] fine-tunes the model to predict nega-
tively guided noise. In other words, it decreases the probability of generating
images of the target concept, thus unlearning that concept. FMN [52] designs
a computationally efficient unlearning method by directly minimizing the cross-
attention weights corresponding to the target concept in the input text prompt,
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encouraging the model to ignore the concept. UCE [16] employs a closed-form
editing approach to optimize the projection matrices of keys and values in cross-
attention layers, ensuring the model maintains locality when unlearning the tar-
get concept.

Although promising progress has been made in erasing specific target con-
cepts, most existing works are not specifically designed to preserve model locality
and robustness. For example, Ablating [23] and ESD [15] fine-tune a considerable
amount of parameters within pre-trained diffusion models to achieve concept era-
sure, which inevitably compromises the original capabilities of the model. On the
other hand, methods such as UCE [16] and FMN [52] only modify specific param-
eters (i.e., the projection matrices of keys and values in cross-attention layers)
responsible for encoding input textual features instead of visual ones. These
methods would be vulnerable to rephrased target concepts since they only learn
to dissociate textual prompts in the cross-attention layers (i.e., lack of ability to
recognize that paraphrased queries are semantically similar to the erased target
concept). For example, a diffusion model that has been erased of the concept
of “car” may still produce images of jeeps due to its inability to recognize that
jeeps fall under the category of cars; hence, it cannot remove the attention to
jeep in cross-attention layers. As a result, proposing a concept-erasing method
that addresses locality and robustness continues to pose a crucial challenge.

In this paper, we propose Reliable Concept Erasing via Lightweight Erasers
(Receler) for erasing concepts from pre-trained diffusion models, exhibiting suf-
ficient locality and robustness properties. Receler involves a lightweight eraser
(only 0.37% of the U-Net parameters), which is designed to remove a target
concept from the outputs of cross-attention layers. During this unlearning pro-
cess, we train the eraser while preserving the image generation capability of
the pre-trained diffusion models. Furthermore, a concept-localized regulariza-
tion is introduced to ensure that the eraser focuses on erasing the target con-
cept. This regularization prevents the generation of non-target concepts from
being affected, thereby preserving locality. As for robustness, we advance adver-
sarial prompt learning, which optimizes the adversarial prompts that induce the
model to generate images of the target concept and then fine-tunes the eraser to
erase images generated with these prompts. By training our eraser with concept-
localized regularization and adversarial prompt learning, we are able to preserve
the image generation capability of non-target concepts and robustly refrain the
model from generating images with target-concept content.

We now summarize the contributions of this work below:

– We present Reliable Concept Erasing via Lightweight Erasers (Receler), a
novel approach using a lightweight eraser (only 0.37% of the U-Net parame-
ters) for reliable and efficient concept erasing.

– Locality is introduced through concept-localized regularization, which con-
strains the eraser for precise erasing of the target concept without affecting
the generation of non-target ones.

– Receler is trained against adversarial prompts, imitating paraphrased prompts
of target concepts, resulting in improved robustness in concept erasure.
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2 Related Works

2.1 Erasing Concepts from Diffusion Models

Text-to-image diffusion models [4, 32, 34, 36, 38] have been shown to generate
high-quality images with impressive generalization. However, such models are
typically trained on extensive web-crawled data (e.g., LAION-5B [41]), which
could memorize NSFW or copyrighted content, leading to the generation or
replication of undesired images [9,44]. To address this issue, some works explore
the solution without the need to update the model weights. For instance, Stable
Diffusion [36] employs an unsafe content classifier to filter out risky outputs,
while SLD [39] uses negative guidance to prevent inappropriate content genera-
tion. However, the former relies on the reliability of pre-trained classifiers, while
the latter only suppresses undesired concepts without complete removal.

In response, several works focus on fine-tuning the diffusion model to erase
the target concepts [15, 16, 23, 52]. Ablating [23] associates each concept to be
erased, e.g ., “grumpy cat,” with a broader, predefined anchor concept, e.g ., “cat”
and fine-tunes the diffusion model to map the generated image of the target con-
cept to that of the anchor concept by minimizing the L2 distance of predicted
noises. Inspired by classifier-free guidance [19], ESD [15] proposes to decrease the
likelihood of generating images belonging to the target concept. This is achieved
by fine-tuning the diffusion model to predict negatively guided noises, effec-
tively steering the model’s conditional prediction away from the erased concept.
FMN [52] adopts attention resteering, a computationally efficient unlearning
method, to identify attention maps associated with the target concept in the
diffusion U-Net’s cross-attention layers. By minimizing the attention weights
corresponding to the target concept, the diffusion model gradually disregards
the target concept during image generation, facilitating the erasure of the con-
cept. UCE [16] employs a closed-form editing method to optimize the projection
matrices of keys and values in cross-attention. The objective is to align the em-
bedding of a source prompt (e.g ., “a photo of an airplane”) more closely with that
of a destination (e.g ., an empty string), while leaving other unrelated concepts
unchanged. Despite their effectiveness in erasing concepts, most current meth-
ods are not particularly designed to preserve robustness against paraphrased
prompts (e.g ., “nudity” vs. “without clothes”). Moreover, both [23] and [15] re-
quire fine-tuning a considerable number of model parameters, which might affect
the model capability and consequently compromise the locality property.

2.2 Controlling Text-to-Image Diffusion Models

Parameter-Efficient Fine-Tuning (PEFT) is a training scheme that addresses the
challenges of extensive parameter updates, especially for large language models.
These approaches update only a small subset of parameters, thereby reducing
the risk of compromising the pre-trained capabilities of the model. Recent re-
searches [14,24,30,37,51,53,55] have applied PEFT to control text-to-image dif-
fusion models. For instance, some studies [14,24,37] empower the model to learn
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personalized or unseen concepts by fine-tuning a new text token and a small num-
ber of parameters using few user-provided exemplar images. Meanwhile, other
works [30, 51, 53, 55] aim to enable diffusion models to generate images based
on additional conditions, e.g ., edge maps, depth maps, or segmentation masks.
They fine-tune lightweight task-specific modules with condition-image pairs to
achieve control over the image generation process. Despite the effectiveness of
these methods, they achieve learning new concepts by accessing the associated
data of interest during training. As for concept erasing, since one only observes
the description of the concept to be unlearned, existing PEFT-based methods
cannot be directly applied.

2.3 Adversarial Attack & Training

In adversarial attacks [2, 13, 17, 25], adversarial examples are deliberately con-
structed inputs, which would deceive models into making incorrect predictions.
Popular methods such as Fast Gradient Sign Method (FGSM [13]) and its vari-
ants (I-FGSM [13] and MI-FGSM [13]) targeted at attacking classification mod-
els, utilizing the resulting loss gradients to produce imperceptible perturbations
and induce misclassification. In contrast, recent approaches [11,47,54] introduce
prompt-based adversarial attacks tailored to provoke seemingly unlearned dif-
fusion models into generating images of the unlearned concepts. For instance,
P4D [11] learns prompts to reconstruct noise associated with the target concept
in diffusion models, and Ring-A-Bell [47] extracts holistic concept representa-
tions from CLIP model [33] to generate model-agnostic attack prompts. These
learned attack prompts have been shown to provoke unlearned models to re-
generate images of the erased concept, posing potential issues in text-to-image
generative models.

To defend against such adversarial attacks, various adversarial training strate-
gies have been proposed [3, 17, 28]. Such adversarial training schemes expose
models to adversarial examples during training, enabling the models to learn and
recognize these examples. Consequently, these adversarially trained models can
respond accurately when encountering adversarial examples during inference.
Inspired by adversarial training approaches, we employ an adversarial erasing
learning scheme to introduce additional robustness to the unlearned model. We
will detail our proposed framework in the following section.

3 Method

Problem formulation. We first define the setting and notations of our Receler.
Given a pre-trained text-to-image diffusion model, parameterized by θ, we aim
to erase a textual concept c from the model without requiring access to the
corresponding image data. The erasure is considered successful when the model
no longer generates images that contain or represent the concept c (e.g ., “nudity”-
erased model should not generate any images with exposed body parts).
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Fig. 2: Overview of Receler. (a) Receler involves iterative learning of a lightweight
Eraser E and adversarial prompt embedding eAdv. The former is trained to erase the
target concept c while preserving non-target concepts, and the latter learns to imitate
the prompts to recover visual content associated with the concept previously erased.
(b) The Eraser E is inserted after each cross attention layer of Diffusion U-Net to
remove the target concept from its outputs, with prediction ol directly added to the
cross attention output.

As depicted in Fig. 2, our method employs a lightweight Eraser E, param-
eterized by θE , to learn to erase the target concept c, as discussed in Sec. 3.1.
To introduce the desirable locality and robustness to our model, we incorporate
concept-localized regularization and adversarial prompt learning schemes into
our framework, as detailed in Sec. 3.2 and Sec. 3.3.

3.1 Concept Erasing with Lightweight Eraser

In order to erase particular visual concepts from a pre-trained diffusion model, we
introduce a lightweight adapter-based eraser. As depicted in Fig. 2, by solely fine-
tuning the newly introduced θE , our goal is to unlearn the target visual concept
while preserving model generalization on non-target concepts. To be specific, our
eraser is designed to remove the target concept from the output visual features
of each cross-attention layer within the diffusion U-Net. This is based on the
fact that these layers are responsible for incorporating the input text concept
into the visual features. Thus, our eraser is positioned subsequent to each of
the cross-attention layers, which is in line with the empirical analysis presented
in [49]. To erase the concept, the eraser is trained to predict the negatively guided
noises [15, 19] that move the model’s prediction away from the erased concept.
The objective is defined as:

LErase = Ext,t

[
∥ϵθ′(xt, ec, t)− ϵE∥2

]
,

where ϵE = ϵθ(xt, t)− η [ϵθ(xt, ec, t)− ϵθ(xt, t)] .
(1)
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Note that θ′ = {θ, θE} represents the parameters of the diffusion model plugged
with eraser, xt ∈ RW×H×d is the denoised image at timestep t sampled from θ′

conditioned on c, ec is the text embedding of concept c, and ϵE is the negatively
guided noises [15, 19] predicted by θ. By minimizing the L2 distance between
ϵθ′(xt, ec, t) and ϵE , the eraser learns to reduce the probability of the generated
image x belongs to the target concept c, thus effectively erasing the concept.

3.2 Concept-Localized Regularization for Erasing Locality

As the first desirable property in concept erasing, locality refers to preserving the
model’s ability to synthesize content unrelated to the target, which is realized
by enforcing the eraser to affect the image synthesis process only if the target
concept is present. To achieve this, we introduce concept-localized regularization
into our Receler by leveraging the spatial information associated with the target
concept’s text tokens to regularize the eraser outputs. Specifically, inspired by [6,
46], we obtain the binary target concept mask M ∈ RW/4×H/4 by thresholding
the attention maps when predicting ϵθ(xt, ec, t) as follows:

Mi,j =


1, if

1

|S|
∑
s∈S

As
i,j ≥ τ,

0, otherwise.
(2)

where S is the set of indices of all U-Net’s mid-layers with resolution (W4 , H
4 ),

As ∈ RW/4×H/4 is the cross-attention map in the s-th layer of the text tokens
corresponding to the concept c, and τ is a pre-defined threshold. With M ob-
tained, we calculate the following regularization loss to regularize the outputs of
the eraser as follows:

LReg =
1

L

L∑
l=1

∥ol ⊙ (1− M̃)∥2, (3)

where L is the number of U-Net’s layers, ⊙ is the element-wise product, ol ∈
Rwl×hl×d is the output of the eraser in the l-th layer with the resolution (wl,
hl), and d is the feature dimension. Note that M̃ is the shorthand of M being
bicubically upscaled to the same resolution as ol. With the above regularization
introduced, our Receler is enforced to preserve the generation of non-target con-
cepts. Thus, the diversity and fidelity of the original model can be maintained.

3.3 Adversarial Prompt Learning for Erasing Robustness

To further ensure our Receler being robust against prompting attacks (e.g ., by
paraphrased or learned prompts), we introduce an adversarial learning strat-
egy into our framework to enrich such model robustness. In our framework, we
present a unique adversarial prompt learning scheme, which learns prompting
attacks that would induce the diffusion model to synthesize the images contain-
ing previously erased concepts. To achieve this, we design the adversarial loss,
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which optimizes the continuous soft prompts eAdv by encouraging such learned
prompts to imitate the malicious prompts, as illustrated in Fig. 2. More precisely,
the objective LAdv is defined as follows:

LAdv = Ext,t

[
∥ϵθ′(xt, e

′, t)− ϵM∥2
]
, (4)

where e′ = [ec; eAdv] is the concatenated prompts of the erased target concept
embedding and the learned soft prompts, and ϵM = ϵθ(xt, ec, t) represents the
malicious noise predicted by the pre-trained diffusion model (without safety
mechanism) conditioned on the target concept. By minimizing this adversarial
loss, eAdv learns to regenerate the unlearned concept from the erased model. The
optimization of the soft prompt eAdv and the eraser θE is performed iteratively,
with each being fixed while the other is trained. Thus, θE and eAdv are trained
against each other to improve model robustness. For more details, please refer
to the pseudo-algorithm in the supplementary material.

4 Experiments

In this section, we first conduct quantitative experiments to assess the robust-
ness and locality of Receler compared to state-of-the-art baselines, followed by
ablation studies of our method. Lastly, we present qualitative comparisons and
visualizations to demonstrate its effectiveness.

Datasets. We conduct experiments on erasing objects defined in the CIFAR-10
dataset [22] and on erasing inappropriate contents from the Inappropriate Image
Prompts (I2P) dataset [39]:

– Object Erasure. To evaluate the effectiveness of erasure methods in erasing
common visual concepts, we choose to erase ten class labels from CIFAR-
10 [22]. Note that during our experiment, we only utilize the label set, not
the images. For comprehensive assessment, we devise two types of evalua-
tion prompts for each class: Firstly, we use simple prompts formatted as “A
photo of {class}” to evaluate the efficacy of erasure in removing the target
concept. Secondly, to further assess the robustness, we generate 50 para-
phrased prompts for each class using ChatGPT3 to simulate real-world sce-
narios where prompts are typically more complex and target concepts may
not be explicitly mentioned. For example, a paraphrased prompt for “air-
plane” is “A sleek, black stealth bomber flying low over a desert landscape
at dusk.” More details can be found in the supplementary material.

– Inappropriate Content Erasure. The I2P dataset [39], collected from a
text-to-image prompt dataset DiffusionDB [48], comprises 4,703 real-world,
user-generated prompts that produce inappropriate images, including hate,
harassment, violence, self-harm, shocking, sexual, and illegal content.
3https://chat.openai.com/
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Evaluation Setup. We assess the robustness and locality of the erasure meth-
ods for object erasure and inappropriate content erasure as follows:

– Object Erasure. For each method, we fine-tune ten models, each erasing
one CIFAR-10 class. Each model is then evaluated by: 1) Efficacy (AccE): the
percentage of the target class being erased when inputting simple prompts;
lower values are better. 2) Robustness (AccR): the percentage of the target
class being erased when inputting paraphrased prompts; lower values are bet-
ter. 3) Locality (AccL): the percentage of non-target classes being preserved;
higher values are better. To assess efficacy and robustness, we generate 150
images using simple and paraphrased prompts for the target class, respec-
tively. For Locality, we generate 50 images for each of the nine non-target
classes using paraphrased prompts. We then use GroundingDINO [27] to
detect if the corresponding class is presenting in the image, threby assess-
ing AccE , AccR, and AccL. To further evaluate the overall performance, we
calculate the harmonic mean (H) of 100− AccE , 100− AccR, and AccL.

– Inappropriate Content Erasure. Following ESD [15], we fine-tune two
models for each erasure method: one for “nudity” and the other for the pre-
defined inappropriate concepts e.g . hate, harassment, and violence. We use
the NudeNet detector [5] to detect nudity and both the NudeNet and the
Q16 detector [40] to identify the inappropriate concepts. Model robustness is
evaluated by using real-world prompts in I2P [39]. Locality is evaluated us-
ing COCO-30K [26], a nudity-free dataset, by employing the nudity-erased
model to generate safe contents from COCO-30K prompts and evaluating
the quality of the generated images in terms of FID [18] and CLIP [33].

Comparisons. We compare Receler to state-of-the-art erasing methods, in-
cluding FMN [52], SLD [39], Ablating [23], ESD [15], and UCE [16]. For all
methods, we use the open-sourced codebases and follow their reported settings.
We fine-tune all models from SD v1.4 [36], and for all image generation, we em-
ploy DDIM sampler [45] over 50 steps and a guidance scale of 7.5. Following SD
v1.4, the image resolution in all our experiments is 512×512. Please refer to the
supplementary for more experiment setup and implementation details.

4.1 Quantitative Evaluation

Object Erasure. In Tab. 1, we show that Receler surpasses previous state-of-
the-art methods in erasing common visual concepts from CIFAR-10 [22] class
labels. Notably, Receler achieves the highest harmonic mean (H) and exceeds
the second-best method by 11.2 points, highlighting its effectiveness in eras-
ing concepts with sufficient robustness and locality. Specifically, when assessing
method efficacy using the simple prompts (AccE), Receler achieves an average
accuracy of 14.9% across the erased classes, 2.2% better than the second-best
method, ESD [15]. In addition, when evaluating method robustness with para-
phrased prompts (AccR), Receler reaches 17.6% on average, outperforming ESD
by 22.3% in the erased classes. We evaluate the locality of the erased model by
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Table 1: Evaluation of erasing common objects in CIFAR-10 classes. AccE
and AccR represent efficacy and robustness, indicating accuracy of target class (which
should be minimized) on simple and paraphrased prompts, respectively. Locality, AccL,
is accuracy of non-target classes (which should be maximized) using paraphrased
prompts. The harmonic mean H reflects overall assessment of AccE , AccR, and AccL.

Methods Metrics
Erased concepts

air-
plane

auto-
mobile bird cat deer dog frog horse ship truck avg.

SD v1.4
AccE 89.3 99.3 93.3 96.7 99.3 98.7 96.0 97.3 95.3 96.0 96.1
AccR 79.3 94.0 96.0 88.0 98.7 92.0 88.7 92.7 65.3 84.0 87.9
AccL 88.8 87.2 87.0 87.9 86.7 87.4 87.8 87.3 90.4 88.3 87.9

FMN [52]

AccE ↓ 93.3 97.3 90.0 92.0 98.0 95.3 84.7 95.3 88.7 94.7 92.9
AccR ↓ 80.7 96.7 93.3 70.7 95.3 86.7 67.3 95.3 60.7 84.0 83.1
AccL ↑ 88.0 88.2 86.0 87.6 84.4 88.0 86.4 85.8 90.4 88.9 87.4
H↑ 14.1 4.4 11.5 17.6 4.1 10.0 27.9 6.9 24.0 11.4 14.2

Ablating
[23]

AccE ↓ 78.0 74.7 76.7 93.3 92.7 97.3 94.7 100.0 90.7 86.7 88.5
AccR ↓ 67.3 90.0 93.3 72.7 95.3 87.3 71.3 90.7 58.0 76.0 80.2
AccL ↑ 87.8 83.8 84.9 87.3 84.0 85.8 86.0 85.3 88.2 86.4 86.0

H↑ 34.3 19.8 14.7 15.2 8.3 6.5 12.8 0.0 21.0 23.4 20.1

ESD [15]

AccE ↓ 20.0 44.0 11.3 14.0 19.3 20.0 13.3 8.7 16.0 4.7 17.1
AccR ↓ 33.3 81.3 54.0 18.0 40.7 27.3 38.7 41.3 32.0 32.7 39.9
AccL ↑ 83.6 79.8 72.9 71.8 68.0 70.0 79.3 68.2 86.7 79.1 75.9

H↑ 76.0 35.8 64.2 79.5 68.2 74.0 74.2 70.3 78.6 79.0 71.6

UCE [16]

AccE ↓ 34.7 46.0 8.7 16.7 4.0 11.3 11.3 6.0 22.0 10.0 17.1
AccR ↓ 58.0 79.3 63.3 16.0 15.3 49.3 28.0 34.0 41.3 39.3 42.4
AccL ↑ 84.9 79.1 81.8 82.0 78.0 82.2 83.3 75.8 87.3 81.6 81.6

H↑ 58.9 37.8 59.5 83.1 85.6 69.5 80.7 77.0 72.6 75.3 72.0

Receler
(Ours)

AccE ↓ 10.0 46.7 3.3 11.3 2.7 6.7 23.3 7.3 24.0 14.0 14.9
AccR ↓ 16.7 62.0 26.7 0.7 2.0 4.7 17.3 6.0 20.7 19.3 17.6
AccL ↑ 88.4 81.3 82.2 80.4 76.7 74.7 83.8 80.4 88.2 84.7 82.1

H↑ 87.1 52.3 83.0 88.8 89.5 86.7 80.9 88.6 80.8 83.7 83.2

examining its accuracy in the remaining classes (AccL) aside from the erased
class, focusing on whether erasing one CIFAR-10 class affects the image synthe-
sis of the other unrelated classes. Although FMN [52] and Ablating [23] exhibit
high average AccL, appearing effective in preserving model locality, they struggle
to erase the target objects, with only a 3.2% and 7.6% drop in AccE from SD,
compared to our 81.2% drop.

Erasure of Inappropriate Content. In Tab. 2 and Tab. 3, we evaluate the
robustness of erasing inappropriate content with real-world prompts from I2P
dataset [39]. Compared to the second-best result, Receler stands out by achiev-
ing 4.3% overall improvement in erasing sensitive concepts on I2P and a 3.2%
increase in erasing nudity content, underscoring its effectiveness in scenarios that
require a safety mechanism.

In Tab. 4, in addition to robustness, we assess locality using COCO-30K [26],
a nudity-free dataset. We employ the “nudity”-erased model to produce safe
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Table 2: Quantitative results on In-
appropriate Image Prompts (I2P)
dataset. We follow SLD [39] and apply the
ratio of inappropriate images as the metric.
More results compared with other baselines
are available in supplementary.

Class name Inappropriate proportion (%) (↓)

SD FMN SLD ESD UCE Receler

Hate 44.2 37.7 22.5 26.8 36.4 28.6
Harassment 37.5 25.0 22.1 24.0 29.5 21.7

Violence 46.3 47.8 31.8 35.1 34.1 27.1
Self-harm 47.9 46.8 30.0 33.7 30.8 24.8

Sexual 60.2 59.1 52.4 35.0 25.5 29.4
Shocking 59.5 58.1 40.5 40.1 41.1 34.8

Illegal activity 40.0 37.0 22.1 26.7 29.0 21.3

Overall 48.9 47.8 33.7 32.8 31.3 27.0

Table 3: Quantitative results on nu-
dity prompts from I2P dataset. We
report the number of nudity images de-
tected by the NudeNet [5]. F- and M- re-
fer to female and male, respectively.

Class name Number of nudity detected (↓)

SD FMN SLD ESD UCE Receler

Armpits 148 42 46 31 29 39
Belly 170 116 70 20 60 26

F-Breast 266 155 39 32 35 13
M-Breast 42 17 30 15 12 12
Buttocks 29 12 3 9 7 5

Feet 63 56 19 24 29 10
F-Genitalia 18 15 1 1 5 1
M-Genitalia 7 2 3 7 4 9

Total 743 415 211 139 179 115
Erasing ratio% - -44.2 -71.6 -81.3 -75.9 -84.5

Table 4: Assessment of reliability
of nudity-erased models. Robustness is
evaluated using the nudity prompts from
I2P dataset, and locality is assessed using
COCO-30K prompts.

Method
Robustness Locality

Nudity-erased
ratio(↑) CLIP-30K(↑) FID-30K(↓)

SD - 31.32 14.27

FMN 44.2% 30.39 13.52
SLD 71.6% 30.90 16.34
ESD 81.3% 30.24 15.31
UCE 75.9% 30.85 14.07
Receler 84.5% 31.02 14.10

Table 5: Evaluation of robustness
against learned attack prompts. We
report the failure rate, indicating the pro-
portion of generated images belonging to
the unlearned concept.

Method P4D [11] Ring-A-Bell [47]
cifar10 avg. nudity violence nudity

FMN 88.3% 89.4% 98.8% 94.7%
Ablating 85.4% 82.8% 100.0% 96.8%
SLD 60.5% 56.3% 80.4% 86.3%
ESD 48.1% 54.3% 86.0% 55.8%
UCE 53.8% 51.9% 76.8% 49.5%
Receler 13.7% 31.2% 59.2% 1.1%

content using COCO-30K prompts and evaluate the quality of the generated
images using FID [18] and CLIP [33] metrics. As shown in the last two columns,
Receler secures the highest CLIP-30K and nearly matches the top result on
FID-30K. It is noteworthy that while Receler performs comparably to FMN in
FID-30K, it surpasses FMN in robustness by erasing 40.3% more nudity content.

Learned Attack Prompts. To demonstrate the robustness of Receler in safe-
guarding against the potential and unprecedented malicious attacks, we employ
P4D [11] and Ring-A-Bell [47]. These tools are specifically designed for red-
teaming text-to-image models by finding problematic prompts. As illustrated
in Tab. 5, Receler is significantly more reliable than other concept erasing meth-
ods. Specifically, it achieves lower failure rates–34.4% for CIFAR-10 and 20.7%
for nudity against P4D prompts, and 17.6% for violence and 48.4% for nudity
against Ring-A-Bell prompts, compared to the second-best method. These re-
sults highlight the robustness of Receler in defending against malicious attacks.
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Fig. 3: Qualitative comparison of concept erasure methods. Note that erased
concepts are listed at the top, and images generated from each method are shown in
each row. Input prompts used for image generation are provided in supplementary.

Ablation Study. In Tab. 6, we ablate the three proposed components in Re-
celer : the lightweight eraser, concept-localized regularization, and adversarial
prompt learning. We establish a simple baseline by fine-tuning the whole model
with Eq. (1) (i.e., the first row). With the eraser introduced, both AccR and AccL
improve. Adding concept-localized regularization further increases the AccL from
77.4% to 79.8%, demonstrating its effectiveness in enhancing locality. On the
other hand, coupling adversarial prompting learning with the eraser boosts AccR
by 14%, albeit with a slight decrease in AccL. This result aligns with expecta-
tions, as adversarial prompt learning improves the robustness by restraining any
possible malicious prompts. Therefore, Receler, which integrates both adversarial
prompt learning and concept-localized regularization, yields the best experimen-
tal results. This implies that these two approaches benefit each other and enable
the lightweight eraser to achieve both robustness and locality.

4.2 Qualitative Evaluation

Visualization of Erased Concepts with Paraphrased Prompts. In Fig. 3,
we show examples of erasing different artist styles (e.g ., van Gogh), objects
(e.g ., automobile) and high-level concepts (e.g ., nudity). As observed in the
figure, ESD [15] and UCE [16] fail to erase the target concept, with the outputs
from these methods closely resembling the original images from SD [1]. On the
contrary, Receler successfully erases all target concepts and is able to generate
images that are visually close to the original ones, e.g ., same background with
the car removed, a human in the same posture with nudity removed.

In Fig. 4, we qualitatively validate the robustness and locality of Receler.
The diagonal orange boxes shows its robustness against paraphrased prompts
where the erased concept is not explicitly mentioned. For instance, airplane-
erased Receler successfully prevents the generation of an “airplane” image when
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Fig. 4: Visualization of robustness and locality from Receler on CIFAR-10.
The red strikethrough at the top indicates the erased concepts. On the left, the input
paraphrased prompts are provided. Images enclosed within the diagonal orange borders
shows robustness while others shows the locality.

SD ESD UCE RecelerSD ESD UCE Receler

(a) nudity (b) violence

Fig. 5: Visualization of erasure methods against learned attack prompts. We
use Ring-A-Bell [47] to generate adversarial prompts for nudity and violence concepts.

the prompt is paraphrased to “jet”. Concerning locality, as shown in the non-
diagonal boxes, Receler generates images that not only faithfully adhere to the
descriptions but also closely resemble the images from the original diffusion
model. Notably, it can be seen that Receler is able to replace the unlearned
objects with reasonable alternatives rather than simply removing them, e.g .,
two white puppies are substituted with two people wearing white furry clothes
and gloves (see the fourth row in Fig. 4).
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Table 6: Ablation study on
CIFAR-10. We ablate the components
of Receler and report the robustness
and locality metrics. The first row
refers to fine-tuning all parameters with
only LErase in Eq. (1).

Components Metrics
Eraser LReg LAdv AccR(↓) AccL(↑)

✗ ✗ ✗ 39.4 75.2
✓ ✗ ✗ 34.9 77.4
✓ ✓ ✗ 26.3 79.8
✓ ✗ ✓ 20.9 76.2
✓ ✓ ✓ 17.6 82.1

None Dog Dog+Airplane

None Bird Bird+Ship

Fig. 6: Examples of erasing multiple
concepts. Instead of training an eraser for
multiple concepts from scratch, we combine
existing erasers for multi-concept erasure.

Visualization of Robustness against Learned Attack Prompts. In addi-
tion to the quantitative results shown in Tab. 5, we further qualitatively demon-
strate the robustness of Receler against learned attack prompts in Fig. 5. The
attack prompts are learned to induce the concepts of “nudity” and “violence”
from models that should have erased these concepts using Ring-A-Bell [47]. For
both nudity and violence attack prompts, Receler successfully prevents the gen-
eration of erased concepts, whereas other methods like ESD and UCE fail and
generate images with the supposedly forbidden concepts (e.g ., nudity or blood).

Compositional Concept Erasure. In Fig. 6, we showcase examples of Receler
in performing compositional concept erasure. This is achieved by combining out-
puts from separately trained erasers, each targeting a specific unlearned concept,
during inference. By averaging these outputs, compositional concept erasure is
accomplished without necessitating retraining. This approach notably offers the
flexibility to selectively determine which concepts are to be erased, as required.

5 Conclusion

In this paper, we proposed Reliable Concept Erasing via Lightweight Erasers
(Receler) to erase target concepts entirely from the pre-trained diffusion model
against prompting attacks (i.e., robustness), while preserving its image gener-
ation ability of other concepts (i.e., locality). In Receler, we employ concept-
localized regularization to enforce the eraser to only affect the visual features
related to the target concept. To enhance model robustness to paraphrased or
attack prompts, we present an adversarial prompt learning scheme to induce the
model to produce images of previously erased concepts, followed by optimizing
the model against such image generation. We conducted extensive quantitative
and qualitative evaluations on Receler, validating its superior robustness and
locality-preserving ability over previous concept-erasing methods.
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